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The Rokhlin-Greengard fast multipole algorithm for evaluating Coulomb and 
multipole potentials has been implemented and analyzed in three dimensions. 
The implementation is presented for bounded charged systems and systems 
with periodic boundary conditions. The results include timings and error 
characterizations. 
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1. I N T R O D U C T I O N  

Prior to the dissertation work of Greengard, (1) the statistical mechanics of 
Coulomb systems by simulation methods utilized algorithms which required 
order N 2 or N 3/2 operations to calculate the potential energy of N charges 
or multipoles. The N 2 algorithm is simply the definition of the potential 
energy of a set of charges qi, located at positions si, 1 ~ i ~< N, 

N 

PE = Z q'qj 
i < j  Sij 

In systems with periodic boundary conditions, the standard Ewald 
sum method (7) requires order N 3/2 operations. The N 3/2 and some 
approximate order N methods have been reviewed by Greengard (2) and 
others (3'4) and will not be discussed here. 

The work of Greengard and Rokhlin (5~ described the theoretical foun- 
dations of an order N algorithm in two and three dimensions which they 
termed the fast multipole method. The fast multipole method in two 

1 Department of Physics, Arizona State University, Tempe, Arizona 85287-1504. 
2 Department of Physics, Kent State University, Kent, Ohio 44242. 

1223 

0022-4715/91/0600-I223506.50/0 �9 1991 Plenum Publishing Corporation 



1224 Schmidt and Lee 

dimensions is superior to conventional schemes for as few as 100 particles, 
as shown by explicit numerical tests. (1"6) 

While development of the 3D implementation has begun on several 
fronts, (7'8~ detailed numerical tests of the Rokhlin-Greengard algorithm 
have not been forthcoming. Since the foundations of the method are simple 
and elegant, one can only conjecture that its implementation has been 
delayed because naive estimates of its breakeven point can easily be beyond 
capabilities of current machines. 

The purpose of this report is to characterize the efficiency and 
accuracy of the order N algorithm in its original formulation. (1) This is an 
algorithm of enormous implication in computational physics. Therefore, we 
will describe the computational implementation and difficulties and its 
usefulness relative to current hardware. Finally, we provide timings and 
empirical tests of its accuracy. The reader who is interested in the analysis 
of algorithmic complexity and mathematical criteria for precision are 
referred to the original articles. (1'8) 

2. T H E  O R D E R - N  A L G O R I T H M  

We give a descrition, at a practical level, of the fast multipole 
algorithm and restate the relevant theorems using familiar notation. The 
mathematical conventions for spherical harmonics and units are those 
found in Jackson. ~ 

The economy of the fast multipole method is based on the representation 
of interactions between distant charged regions using truncated multipole 
expansions. The algorithm begins by logically dividing the charged system 
into approximately N cubic subdomains. The multipole expansions of the 
potential due to charges in each subdomain are combined in a hierarchical 
procedure eliminating redundant operations to obtain an external potential 
for each box. The potential of the individual particles is then expressed as 
a direct interaction with particles in nearby boxes plus a Taylor series 
expansion of the field due to particles in all distant boxes. The combining 
of the multipole expansions is done such that only order N operations are 
required and a fixed precision is maintained. 

The level of precision e, which is a rigorous bound, is guaranteed to 
be met when all multipole are carried out to an order L = -log2(e). This 
bound is generous in physical applications. The proofs of the bounds 
needed are given by Greengard (~) and will not be repeated here. 
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3. MULTIPOLE T R A N S F O R M A T I O N S  

The fast multipole method requires three transformations of the 
expansions of the potential. The transformations begin with a multipole 
expansion of the potential, 

Mlm Y lm ( O , (715) 
O(r)=4u  Z ~ +  1--~-~:i 

[, m 

(1) 

or a local expansion 

q~(r) =4~ ~ L,,~/Yt~,(O, q~) (2) 
l,m 

that is given in spherical coordinates (r, 0, (b) relative to an origin. The 
multipole moments are defined by Jackson, ~ 

Mlm = 2 l , 0 q is iYlm(  i, c'15i) (3) 
i 

and the Ltm we will refer to as the local moments of the Taylor series 
expansion. 

We define the coordinate systems at origin O and O' as in Fig. 1 with 
r,, designating the translation from O to O'. Given Llm or Mlm of a potential 
expansion in terms of r relative to O, the following three transformations 

O x 

Fig. 1. 

Z / 

O t  X t 

Coordinate systems employed in multipole transformations. 
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are needed by the fast multipole method to obtain the moments L'z, m, o r  

M i ,  m, of a potential expansion in terms of r' relative to O" 

ml,rn,  z E MM ' Trm,,lmMi, ~ (4) 
l,m 

L l 'm '  = E LM ' T l ,m, , lmMlm ( 5 )  
l, m 

Ll 'm'  ~ E LL ' Tr,~,tmLlm (6) 
l,m 

Defining 

a,m = ( _  1),+m (2l+1)  1/'2 
[4n(l + m)? ( l - m ) ? ]  1/2 

we have the following formulas for the transformation matrices: 

( _ r , ) r  1 Y~,-Z,m,-,,,(Ot, gSt)ar-t ,m'-matm(2l'  + 1) MM Tz'~', tm = 4~ 
(2/+ 1)[2(l' -- l) + 1 ] arm, 

(--1)/+m Y~'+t,m'-m(Ot, qPt)almarm' LM 
Tl,m,,l m = 4~r r t /+t+l(2l+ 1)(21'+ 1)ar+l.m' m 

r t -  r ,~  m'(O,, ~ t )a l 'm 'a l - - l ' ,m- -m ' LL l' Y l -  
Tl'm,, l m =  47~ t 

arm(21'+ 1)[2(1-- l ' )+ 1] 

(7) 

(8) 

(9) 

(10) 

The transformation matrices are not dense, being zero when the subscripts 
on the spherical harmonics are outside of their legal range. 

The above transformations are exact. The multipole expansions 
converge outside of a sphere with radius equal to the distance to the 
furthest charge and the local expansion converge inside of a sphere with 
radius less than the distance to the nearest charge. 

The fast multipole method, as described by Rokhlin and Greengard, (x3/ 
truncates all expansions and transformations to include only those spherical 
harmonics with/-values up to some specified maximum L. A critical feature 
of the implementation is maintaining a rigorous error bound. The error 
bound is E--  (~i  [qi[ )2-L in the domain of validity of each expansion. For 
the truncated multipole expansion of a set of charges with M~m given by 
Eq. 3, the bound is guaranteed for r > 2b, where b is the distance from the 
origin to the furthest charge. This domain where the rigorous bound 
applies we will term the domain of validity. The error bound divided by the 
sum of absolute charges defines a quantity ~ = 2-L which they term the 
relative precision. It is maintained by the results of all transformations in 
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their domain of validity. Greengard (1) demonstrates that the domain of 
validity of a translated multipole expansion as given by the truncation of 
Eq. (4) is outside a sphere of radius in r, + a, where r, is the distance trans- 
lated and a is the radius of the domain of validity of the original multipole 
expansion. Similarly, the local expansion obtained from a multipole expan- 
sion using the truncation of Eq. (5) has a domain of validity inside a sphere 
of radius r , - a .  The local-to-local transformation is exact and does not 
alter the domain of validity of a local expansion. 

In the following description on the algorithm of Rokhlin and Greengard, 
the external potential for each box is obtained by combining multipole 
potentials in such a way that there are no redundant transformations and 
the potentials are used only in their domain of validity. 

3.1. The O r d e r - N  A l g o r i t h m  

We will first present the algorithm for 37 charges confined to a cube of 
sides d centered at the origin. Later, we will incorporate the changes 
necessary to describe a bulk system which consists of the cube and its 
periodic images. 

Step O. The algorithm begins by dividing the cube into successively 
smaller cubic subvolumes. We define a refinement level r to be the division 
of the cube into nonoverlapping subvolumes of dimension d/2 r, up to some 
maximum refinement R. At level r = 0, the refinement contains one cube, 
the original volume. At level r = 1, there are eight subvolumes, continuing 
to the final refinement with 8 R equal-sized subvolumes. The maximum 
refinement is chosen so that N is approximately 8 R. The maximum of 
the subsequent multipole expansion L is chosen so that 2 L~<e, the 
predetermined relative precision. 

Step 1. Beginning at the refinement level R, calculate the 8R truncated 
multipole expansions for the particles contained in each box in level R 
about the center of each box. This requires order L 2 operations for each 
box, yielding a net order NL 2. 

We must now define three terms. Each box at level r < R contains the 
eight subdivisions that make up the next greater refinement level. These 
eight subboxes are called child boxes. The larger box containing the child 
is the parent box. The term "touching box" refers to any box that shares 
a face, edge, or corner of a given box. Each box has 26 "touching" boxes. 

Step 2. Beginning with refinement level R -- 1 and continuing to r = 0, 
form the truncated multipole moment expansions for all charges in all boxes 
about their centers by using Eq. 4, to transform the multipole expansions 
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of the eight child boxes to the center of their parent. The translation of a 
multipole expansion requires L 4 operations, and this must be performed for 

R - - 1  

F 8  r 
r = O  

child boxes, the net work being order NL 4. 

Step 3. Each multipole expansion will be converted to a local 
expansion about the center of all boxes at the same level which are 
sufficiently distant that the relative precision of the local expansion is e. Tlae 
multipole expansions which contribute to a local expansion with a domain 
of validity including the one box are the multipole expansions of all boxes 
at the same level which do not touch the one box. Carried out directly, this 
would require order N 2 work. To avoid this, a combination of local-to- 
local and multipole-to-local transformations is substituted. 

At levels r = 0 and 1, no boxes exist that are sufficiently distant that 
a valid multipole-to-local transformation can be performed. The local 
expansions at these levels are set to zero. Thus, beginning at level r = 2 and 
continuing to r = R, the following operations are performed. 

(a) For each box in level r, transform the local expansion of the 
parent box to the center of the current box. This requires L 4 operations per 
box. 

(b) Add to the local potentials from step 3a the transformation of the 
multipote potentials for all boxes of the current level that satisfy the 
following: (i) the box does not touch the current box, and (ii) the charges 
in the box did not contribute to the local potential initialized in step 3a. 

Step 3a requires 

R 

L4 2 8r 
r = 2  

operations and step 3b requires 

R 

L 4- 189 ~ 8 r 
r = 2  

operations, because there are 189 nearby boxes which have multipole 
expansions that can be converted to valid local expansions. 

Step 4. Step 3 results in a local potential in each box hat is the 
potential due to all particles in all boxes at the same level which do not 
touch the current box. 
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The last step involves the calculation of the final potential and forces 
of all particles in the boxes at the finest level of refinement in two steps. 

(a) For each box in level R, evaluate the potential and force from the 
local expansion at each particle location. This requires N evaluations of L 2 
operations. 

(b) Evaluate the remaining interaction of each particle with the other 
particles in the current box plus the particles in touching boxes. This 
operation is order N times the average number of particles in the current 
and neighbor boxes. 

3.2. Analysis 

First, one must establish that this is indeed an order-N algorithm. The 
choice of the number of boxes at the finest level R being approximately 
equal to N is critical, as in the requirement that the charge density be 
approximately uniform. This can be seen if we consider R fixed and not 
necessarily chosen to be such that 8 R ~N.  With R fixed and N allowed to 
be arbitrarily larger than 8 R, we will analyze each of the above steps again. 

Step 0 is an operation done only once and adds a constant to the time 
required and can thus be ignored. 

In step 1, one initializes 8 R multipole expansions to zero, a nontrivial 
contribution to the overall work, taking 8 R L  2 operations. The calculation 
of N multipole expansions contributes NL 2, giving a polynomial contribu- 
tion, P1 = a8RL2 + bNL2. For step 2, the polynomial is P 2 =  c8RL 4, and 
steps 3a and 3b contribute P3 = d8RL4 + e8RL4, d and e being due to step 
3a and 3b, respectively. Finally, step 4a contributes f8RL 2 and step 4b 
contributes 

P4 = 8REg~ + g2(N/8 R) + g3(N/8R) 2 ] 

The overall polynomial dependence is then 

P = a 8 R L  2 .-}- b N L  2 + c S R L  4 q- d8R[gl + g2(N/8 R) + g 3 ( N / 8 g )  2 ] 

We see that there is a n  N 2 dependence which is removed by relating R to 
N. The N 2 dependence arises from the last step, which is a direct evaluation 
of interactions between particles in the same box and near-neighbor boxes 
at the finest level. The coefficient of the N 2 term will be negligible when 
there is approximately one particle per box. If N/8 R, the average number 
of particles per box, becomes large, then even for a uniform charge 
distribution the interaction between particles in neighboring boxes 
contributes in important quadratic term in the N dependence. This term 
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then decides when one goes to a greater maximum refinement level R as N 
increases. Because additional refinement levels add significantly to the 
computational cost of the algorithm, it is desirable to have the coefficient 
of the quadratic term as small as possible to delay adding refinement levels 
as N increases. 

It should be noted that it is the average of the square of the number 
of particles per box rather than the square of the average which determines 
the computational cost in the nearby potential evaluations. For very 
inhomogeneous systems, it is likely that the adaptive form of the fast 
multipole method (1) or other hierarchical methods (4) will be more 
appropriate. 

Our computer program structure follows the steps outlined above and 
the polynomial dependence of each step can be separately quantified in 
actual application. We defer further discussion on this point until after we 
have presented our results. We mention only that the N 2 dependence also 
becomes relevant because storage limitations are encountered. Storage 
grows as 8RL 2 with a coefficient of about unity. With a modest precision 
requirement of 10 -6, L ~ 2 0 .  With a gigaword of memory, R cannot 
exceed 7. 

4. P E R I O D I C  B O U N D A R Y  C O N D I T I O N S  

We have also developed a version of the code with periodic boundary 
conditions for evaluating the potential energy of a set of charges in a cube 
and its infinite periodic images. The usual procedure, involving Ewald 
sums, is well documented in many texts. (3~ The Ewald sums over all infinite 
periodic images of each charge can be carried out in a time proportional 
to N 3/2. 

In the fast multipole method, the procedure is initiated in the same 
manner as in the finite case, calculating the multipole expansion of all 
boxes at all refinement levels. The level-zero expansion then contains the 
multipole expansion for all particles in the original cube. All of the periodic 
images have the same multipole expansion about their centers. The fast 
multipole method requires the local expansion of the potential from all 
periodic images except the 26 nearest neighbors of the original simulation 
cell. Having that, the algorithm continues in its downward pass exactly as 
before. 

In the following, we will assume a neutral system of particles. Modifica- 
tions to include a uniform background to compute systems like the 
one-component plasma are straightforward, (3) but will not be given here. 

Since the multipoles of all the images of the simulation cell are the 
same, they factor out of the sum over images. The transformation matrices 
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for each of the reqired simulation cell images can then be added to produce 
one transformation matrix that, when multiplied times the multipole 
moments of the simulation cell, produces the coefficients of the local 
expansion of all those images. 

To construct this transformation matrix, we simply replace the values 
of r2 (t+ 1~ yl, m(Ot, ~t) in Eq. (9) by its sum over values corresponding to all 
the images of the simulation cell except its 26 surrounding cells. The sum 
over all the cells except the simulation cell itself can be calculated using the 
Ewald method by 

Z ~-(l+~Yt,.(O.opq~nop) I nop 
n,o, pv~O,O,O 

= ~, Yzm(O, r [-2~(c~r.op)' 2 2 

.... p (2 l+ 1)?? L ~ exp(-c~ r.op) 

4 2 t 
+ x/---~r,+ ~ 1l +(2~i)'r'-Zexp -(~2r2~~ ~2 J J  (11) 

The r~op, O~op, and @~op are the spherical coordinates of the vector rnop = 
d(n2+@+p2), ~ is the usual Ewald parameter selected to speed 
convergence, and It is given by the recursion relation 

with 

2 l+  1 1 I t = - - " ~ I ,  1 +~exp( -~2 r2 ) (~ r )  2'+1 

7~ 1/2 ~r  
Io = ~ - -  erfc(er) + ~- exp( - e2r2) 

The contribution of the 26 surrounding cells is then subtracted explicitly. 
The prime on the sum indicates omission of the n = o - - p  = 0 term. 

The procedure we use is equivalent to surrounding a finite set of 
images by a vacuum with dielectric constant e = 1, and taking the limit of 
the number of images going to infinity. The usual Ewald method is equivalent 
to using a surrounding conductor with e = oe. The procedure to change 
from one dielectric constant at infinity to another is well known, (3~ and is 
given by 

V ( ~ ) = V ( e o ) + -  ~ 3 e + l  2eo+ 1. D . D  (12) 

The dipole moment, 

D = ~ qir, 
i 

of the simulation cube is known in terms of Mira in Eq. (3). 
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The algorithm is modified so that step 0 creates the image multipole- 
to-local transformation described above, and step 3 is modified by adding 
the nonzero local expansion for levels r = 0 and r = 1. The local expansion 
for r = 0 in step 3a is simply given by applying this transformation to the 
multipole moments of the simulation cell. Step 3b does not change in its 
description, but in the code some logic changes. The changes are actually 
simplifications. In the finite system, boxes near the faces of the cube are 
treated differently because there are no neighboring boxes of charge outside 
the cube. When periodic boundary conditions are employed, all boxes, 
whether interior or near the surface, are treated exactly the same. For  
instance, at level r = 1, where step 3b was not performed in the finite system, 
one now adds to each of the local expansions of the eight subdivisions of the 
cube the 189 transformations of the multipole potentials of the subdivisions 
of the nearby periodic images. Similarly, at all further refinement levels, the 
full 189 transformations are required for each local expansion. This does 
not add significantly to the computational requirements of the algorithm, 
since most of the work occurs at the finest, r = R, level where few of the 
boxes are surface boxes. 

5. T I M I N G  A N D  A C C U R A C Y  

The above description was implemented in ASNI standard Fortran 77 
on the Cray Y-MP 8/864 of the Ohio Supercomputer Center. We have 
carried out a sequence of tests varying the number of particles N, the 
refinement level R, and the order L of the expansions to obtain empirical 
data on timing and accuracy. 

Finite Single  Cube 

The tests employed a distribution of charges randomly positioned in 
the cube and with variations in charge magnitudes randomly assigned in 
the interval ( - 1, 1). Timings and precision determinations were carried out 
for numerous different random charge and position assignments. Table I 
gives the timings for a range of N, L, and R values and the mean square 
errors for the force and potential energy of the particles. 

One can see from Table I that the breakeven point for the fast multipole 
algorithm depends very much on the level of refinement and number of 
multipoles. The error is independent of the level of refinement, as expected, 
and within the rigorous bounds of the theory. The optimum number of 
particles per box at the finest level of refinement is far more than one. For 
L = 8, it is nearly 100 at R = 3. This is because the N 2 term that appears 
with fixed R has a small coefficient. A similar set of observations can be 
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Table I. Comparison of Timings and Accuracies of F M M  and 
Direct Method in a Finite Volume 

1233 

N L R FMM Sec Direct Sec Err F Err PE 

1000 8 3 13.72 0.12 0.69E-03 0.16E-03 
10000 8 3 24.64 11.03 0.39E-03 0.11E-03 
20000 8 3 48.25 42.34 0 . 2 6 E - 0 3  0.18E-03 
40000 8 3 131.8 176.9 0.65E-04 0.12E-03 
80000 8 3 448.0 677.5 0.44E-03 0.13 E-03 
1000 16 3 144.6 0 . 1 2  0 . 2 8 E - 0 4  0.23E-05 

10000 16 3 167.0 11.03 0 . 1 6 E - 0 4  0.41E-05 
20000 16 3 201.9 42.34 0 . 1 7 E - 0 4  0.31E-05 
40000 16 3 310.7 176.9 0.31E-04 0.11E-04 
80000 16 3 677.0 677.5 0.13E-04 0.48E-05 
1000 8 4 59.97 0 . 1 2  0 . 1 8 E - 0 2  0.16E-03 

10000 8 4 65.81 11.03 0.12E-02 0.27E-03 
20000 8 4 73.32 42.34 0 . 9 8 E - 0 3  0.22E-03 
40000 8 4 94.42 176.9 0.73E-03 0.22E-03 

1000 16 4 654.7 0 . 1 2  0 . 4 8 E - 0 4  0.60E-05 
10000 16 4 668.7 11.03 0.49E-04 0.17E-04 
40000 16 4 736.8 176.9 0.28E-04 0.53E-05 
80000 16 4 847.5 677.5 0.29E-04 0.71E-05 

1000 8 5 414.3 0 . 1 2  0 . 1 0 E - 0 2  0.42E-03 
10000 8 5 418.0 11.03 0.14E-02 0.18E-03 
40000 8 5 437.2 176.9 0.75E-03 0.14E-03 
80000 8 5 461.8 677.5 0.81E-03 0.10E-03 

made for the periodic system results shown in Table II. As asserted, there 

is little overhead associated with treating periodic systems. We have 
provided t imings for our Ewald calculations, but  we do not  offer these for 

comparison.  Our  implementa t ion ,  while highly vectorized, does not  employ 

neighbor  tables and  is not  in other ways optimized. 
Finally,  we wish to add a few comments  on the efficient implementa t ion  

of the algorithm. For  L > 16, R > 3, and  N >  10,000, 98 % of the C P U  time 
in our  codes involves step 3b. This is efficiently implemented in one 
subrout ine  where the innermost  loop is over box indices which are the 
target for one of the 189 transformations.  In  this way, the process is highly 
vectorized and  runs at over 180 megaflops. Because there are eight types of 
target boxes, each type treated separately, the possibility for a parallel 
implementa t ion  on an eight-processor Y M P  is clear. Our  results and  t imings 
are all for a one-processor implementat ion.  

In  conclusion,  we have shown that  it is both practical and  efficient to 
carry out  the fast mult ipole method  in three dimensions for both finite and  
periodic systems. 
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Table 

Schmidt and Lee 

I1. Comparison of Timings and Accuracies of F M M  and 
Ewald Method for Periodic Boundary Conditions 

N L R FMM Sec Direct Sec Err F Err PE 

1000 8 3 13.95 8 . 6 1  0.72E-03 0.64E-03 
2000 8 3 14.61 29,62 0.10E-02 0.37E-03 
4000 8 3 16.77 109.3 0.44E-03 0.28E-03 

10000 8 3 27.54 647.4 0.11E-02 0.71E-03 
20000 8 3 59.79 2552. 0.73E-03 0.63E-03 
40000 8 3 177.8 8101. 0.45E-03 0.28E-03 

1000 16 3 145.0 8 . 6 1  0.90E-04 0.20E-04 
2000 16 3 147.7 29.62 0.48E-04 0.25E-04 
4000 16 3 151.7 109.3 0.38E-04 0.42E-04 
8000 16 3 162.3 418.3 0.54E-04 0.26E-04 

10000 16 3 168.2 647.4 0.27E-04 0.12E-04 
1000 8 4 60.47 8 . 6 1  0.14E-02 0.60E-03 
2000 8 4 60.00 29.62 0.22E-02 0.57E-03 
4000 8 4 62.04 109.3 0,11E-02 0.74E-03 

10000 8 4 67.37 647.4 0.58E-03 0.73E-03 
20000 8 4 74.39 2552. 0.92E-03 0.72E-03 
40000 8 4 99.74 8101. 0.63E-03 0,10E-02 

1000 16 4 654.0 8 . 6 1  0.76E-04 0.26E-04 
4000 16 4 655.9 109,3 0.59E-04 0.33E-04 
8000 16 4 677.9 418,3 0.29E-04 0.24E-04 
1000 8 5 415.1 8 , 6 1  0.47E-02 0.59E-03 

10000 8 5 420.8 647,4 0.45E-02 0.57E-03 

Our implementation is generic, following the description by 
Greengard) 1) Several avenues for improvement remain. First, an overall 
factor of two is available because the potential expansion is complex. Only 
half of the coefficients are actually needed. Second, Greengard and 
Rokhlin ~7) have shown that the transformation in step 3b can be 
formulated as a discrete convolution and carried out using fast Fourier 
transforms in a tie proportional to L In L. Further possibilities exist for 
improvement of precision and decreasing coefficients in the polynomial 
dependence on CPU time. Accuracy can be improved by increasing the 
required precision at fixed L and decreasing the size of the domain of 
validity. This has the effect of increasing the number of nearby boxes that 
require special treatment beyond those which are touching. Greengard ~1/ 
describes such an algorithm where 875 rather than 189 nearby boxes are 
treated in step 3b. One may also consider modifying the requirement that 
all expansions and transformations are carried out to the same order L. 
Certainly, the most distant boxes may be more crudely represented without 
loss of precision. Finally, we remark that there is no theoretical requirement 
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that all boxes be identical cubes or even nonoverlapping. These avenues are 
currently being investigated by several researchers and we anticipate that 
a n  order-of-magnitude improvement should be soon forthcoming. 
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